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Announcements

PA2 due Sunday night
Quiz 4 is out, we will review Quiz 3 today
PA 3 is out March 7

Minimal coding, we'll be annotating data, calculating agreement
statistics, and reflecting on the process

You have almost a month to do this (in other words, a break from
programming assignments for a while

Midterm is March 17

In class, mostly
One page handwritten notes, front and back
Official Accessibility requests due by next Tuesday

Questions?
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Terms/concepts you now know/have seen

“Review"”
Probability distribution
Expected Values
Stats (e.g. mean/variance)
Python
Pandas/Numpy/Jupyter

ML High-level ideas

Model class

Loss function
Squared Error
Regularization

Optimization algorithm
(Stochastic) Gradient Descent
Closed form solutions

Making Predictions
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Models

(Regularized) Linear Regression
Polynomial regression

Decision Tree Regression

kNN regression
(Generalized}-additive models

Selection & Evaluation

2/3-way holdout methods
K-fold cross validation
Bias/Variance tradeoff
Generalization error

The 3 sources of error
Over/underfitting
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This week

PA 1, Quiz 3

A brief review of where we're at
Supervised learning — what's the point?
Where do features come from?¢
What does sklearn.linear_model.LinearRegression() actually do?e

A “new” setup from a probabilistic perspective
Maximum Likelihood Estimation
Using the probabilistic approach to re-derive OLS regression

Intro to classification
Logistic Regression
Bayes Optimal Classifier
Naive Bayes

Potentially: SVMs & Kernels

q\
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Back to the beginning

=In Suiir(\-/is\/ejj ML\,A\C\/@(@?V&.X QTIZO%’“ /fgﬁ\v(ag\\ As Io@/
T D= iCY.dB)m)é%am)é é?&*g

= We want to be able to get y when we only have x...
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How do we find the “best model?

We could just memorize the
training data ... right?

Training != Test, curse of
dimensionality \/

So... make assumptions (def'n

model class)

Then, find best model... 3 steps
Define best
Find best

Select/evaluatd,
Linear Regression as an
example... Minfns 223 G{'«e’(o)\’bo\\“\“w ecCoC
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How do we find the “best model?

We could just memorize the L Xz
training data ... right? e w

Training != Test, curse of

dimensionality - (‘-é\é_ﬁw\ V- \"(o\\{\

So... make assumptions (def'n

model class) /
Then, find best model... 3 steps
Define best ‘V\Gf)e (/]MS

Find best @LGSS 6}\

Select/evaluat

Linear Regression as an
example... .
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Re-introducing probability...

Some holes in this “optimization” story...
What was all that business about “expectations”?

What about “training data as a random sample”?2 Of what?
Why SSE?2

Remembering the probabilistic part...

q\
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Implications of probabilistic framing

Goal changes slightly —
find h(x) approx. y

Re-specifying “the best
we can do”...

Re-explaining "“fraining
data as a random
sample’”...

But what about the SSE
optimization part?

q\
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Maximum Likelihood estimation

P(coin) is heads,
when
D={H,T,THHHTTTT}e

More formal
derivation?
Use MLE

Specify parameterized
distribution

Find parameters that
make observed data
most likely

For coin toss...

Example from:
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Linking back to the optimization view

If we have a good model of the distrn. from which (x, y) is
drawn, we can use it to put forward a good guess as to
E[Y | X=X]

MLE gefts us the best estimate of this probability distribution,
given a particular parameterized form...

Actually, two kinds of models C \ )

: X
e (%,)P. Ei_Jj
Eocnt Y } K- ] )
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A "new strategy” for ML

|. Define p(y | x) in terms of some parameterized model j
2. Write down (log) likelihood function & 7lseg Cn.
3Cmd the parameters That maximize the probability of the

obsg\é?d‘dffoN N CL\)\’X t ) /é/’_
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Trying our “new strategy” for linear regression
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See Sections 1 and 2 of https: ,(~/ww .2s.cornell.ed 6‘U’Pse
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Kenneth Joseph
See Sections 1 and 2 of https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote08.html for the full derivation!


