A Review, then Sliding into Classification

Kenneth (Kenny) Joseph

University at Buffalo

Department of Computer Science and Engineering

School of Engineering and Applied Sciences

Announcements

- PA2 due Sunday night
- Quiz 4 is out, we will review Quiz 3 today
- PA 3 is out March 7th
 - Minimal coding, we'll be annotating data, calculating agreement statistics, and reflecting on the process
 - You have almost a month to do this (in other words, a break from programming assignments for a while
- Midterm is March 17th
 - In class, mostly
 - One page handwritten notes, front and back
 - Official Accessibility requests due by next Tuesday
- Questions?

Terms/concepts you now know/have seen

- "Review"
 - Probability distribution
 - Expected Values
 - Stats (e.g. mean/variance)
 - Python
 - Pandas/Numpy/Jupyter
- ML High-level ideas
 - Model class
 - Loss function
 - Squared Error
 - Regularization
 - Optimization algorithm
 - (Stochastic) Gradient Descent
 - Closed form solutions
 - Making Predictions

- Models
 - (Regularized) Linear Regression
 - Polynomial regression
 - Decision Tree Regression
 - kNN regression
 - (Generalized) additive models
- Selection & Evaluation
 - 2/3-way holdout methods
 - K-fold cross validation
 - Bias/Variance tradeoff
 - Generalization error
 - The 3 sources of error
 - Over/underfitting

This week

- PA 1, Quiz 3
- A brief review of where we're at
 - Supervised learning what's the point?
 - Where do features come from?
 - What does sklearn.linear_model.LinearRegression() actually do?
- A "new" setup from a probabilistic perspective
 - Maximum Likelihood Estimation
 - Using the probabilistic approach to re-derive OLS regression
- Intro to classification
- **C** Logistic Regression
 - Bayes Optimal Classifier
 - Naïve Bayes
- Potentially: SVMs & Kernels

Back to the beginning

In Supervised ML, we have... XGTR & Kolves Yelobel (X; yi) D = & (X, yi), ..., (X, y,) 3 G TR x C

We want to be able to get y when we only have x...

- We could just memorize the training data ... right?
 - Training != Test, curse of dimensionality
- So... make assumptions (def'n model class)
 - Then, find best model... 3 steps
 - Define best
 - Find best
 - Select/evaluat
 - Linear Regression as an example...

- We could just memorize the training data ... right?
 - Training != Test, curse of dimensionality
- So... make assumptions (def'n model class)
- Then, find best model... 3 steps
 - Define best
 - Find best
 - Select/evaluat
- Linear Regression as an example...

- We could just memorize the training data ... right?
 - Training != Test, curse of dimensionality
- So... make assumptions (def'n model class)
- Then, find best model... 3 steps
 - Define best
 - Find best
 - Select/evaluat
- Linear Regression as an example...

Selection/evolvation? RMST

- We could just memorize the training data ... right?
 - Training != Test, curse of dimensionality
- So... make assumptions (def'n model class)
- Then, find best model... 3 steps
 - Define best
 - Find best
 - Select/evaluat
- Linear Regression as an example...

Re-introducing probability...

- Some holes in this "optimization" story...
 - What was all that business about "expectations"?
 - What about "training data as a random sample"? Of what?
 - Why SSE?
- Remembering the probabilistic part...

Implications of probabilistic framing

- Goal changes slightly find h(x) approx. y
- Re-specifying "the best we can do"...
- Re-explaining "training data as a random sample"...
- But what about the SSE optimization part?

Maximum Likelihood estimation

- P(coin) is heads, when D={H,T,T,H,H,H,T,T,T,T}?
 - More formal derivation?
 - Use MLE
 - Specify parameterized distribution
 - Find parameters that make observed data most likely
 - For coin toss...

University at Butfalo
Department of Computer Scientific Scientific

Linking back to the optimization view

- If we have a good model of the distrn. from which (x, y) is drawn, we can use it to put forward a good guess as to E[Y | X=x]
- MLE gets us the best estimate of this probability distribution, given a particular parameterized form...
- Actually, two kinds of models
 - Generative
 - Discriminative

A "new strategy" for ML

- 1. Define $p(y \mid \mathbf{x})$ in terms of some parameterized model
- Find the parameters that maximize the probability of the observed data

Department of Computer Science and Engineering School of Engineering and Applied Sciences

@_kenny_joseph

Trying our "new strategy" for linear regression

Department of Computer Science and Engineering School of Engineering and Applied Sciences

15

@ kenny joseph